Eureka. Diario de Gauss

Eureka. Diario de Gauss
Todo número es suma de tres números triangulares

viernes, 2 de diciembre de 2016

Tangentes enteras

La geometría elemental, la de Euclides, nos depara a veces sorpresas agradables. Aquí tienes un buen ejemplo. Un regalo para despedir bien el año.

Las dos circunferencias de la figura son iguales y tangentes en el punto T. Su radio mide raíz de 2.
Trazamos la recta tangente a la segunda circunferencia que pasa por A, y la recta tangente a esta circunferencia en el punto B. Ambas tangentes se cortan en el punto D.


Te aseguro que las medidas de los segmentos AD y BD son dos números enteros.
¿Serías capaz de demostrarlo?
Suerte.

Nota: No vale utilizar GeoGebra.


viernes, 7 de octubre de 2016

Paisajes fractales en Dispar-ART

El pasado día 28 de septiembre se hizo, en la sala de arte Ra del Rey, c/ Reina 11, de Madrid, la presentación de la revista dispar-ART, La revista más cara del mundo según se anuncia.
Y es verdad. Sólo se hacen 20 ejemplares de ella, compuestos por obras originales en cada uno de ellos.
La mitad se envían a los más prestigiosos museos del mundo y los otros 10 ejemplares se venden a un precio...desorbitado.
Al fin y al cabo es comprar casi 70 originales de 70 artistas, poetas y científicos de prestigio.



Mi contribución a este número de la revista son 20 "paisajes fractales" generados con el programa Ultra Fractal 5. Y sin retocar con ningún programa fotográfico.

Para conseguirlos sólo hay que navegar por el proceloso mar del Caos, buscando dentro de esos mundos llenos de irregularidades un poco de orden y armonía

¡Orden en el caos! La búsqueda de un sueño.

Aquí os dejo dos muestras:

Mar azul

Luna 1

Un mundo de sorpresas.

sábado, 9 de julio de 2016

Si Euclides hubiese tenido GeoGebra

Los Elementos de Euclides son una de las joyas de las matemáticas de todos los tiempos.

Y dentro de esa joya hay algunas proposiciones espectaculares. Unas de las más llamativas son las del Libro XIII, las que van de la 13 a la 17.

En ellas Euclides nos muestra aristas de los poliedros regulares inscritos en una esfera de radio R.

La construcción es impresionante, como un castillo de fuegos artificiales.

Os suena, seguro...


Y las relaciones entre ellas constituye un magnífico baile de números racionales:

Te dejo, aquí, una reproducción de la construcción de Euclides que hice con GeoGebra: 

 Euclides-Geogebra

¡Ay, si Euclides hubiese tenido GeoGebra!

miércoles, 6 de julio de 2016

El joven Gauss y el polígono regular de 17 lados

Lectura de verano

El sorprendente encuentro entre la Aritmética, el Álgebra y la Geometría en la cabeza de un joven de 18 años. Entonces no había discotecas...

 Desde su llegada a Göttingen el joven Gauss siguió desarrollando de forma autónoma sus investigaciones sobre números que había iniciado en el Collegium. Sin duda, más fruto de estas investigaciones que de las enseñanzas de Kästner, cuando Gauss estaba en su casa de Brunswick, se va a producir un descubrimiento que será clave, no sólo en la carrera de Gauss, sino en el futuro de las matemáticas: el heptadecágono, el polígono regular de 17 lados se puede construir con regla y compás.

Fue el día 29 de marzo de 1796, durante unas vacaciones en Brunswick, y la casualidad no tuvo la menor participación en ello ya que fue fruto de esforzadas meditaciones; en la mañana del citado día, antes de levantarme de la cama, tuve la suerte de ver con la mayor claridad toda esta correlación, de forma que en el mismo sitio e inmediatamente apliqué al heptadecágono la correspondiente confirmación numérica. 

    Justo un mes antes de cumplir los 19 años.

Puedes disfrutar de un paseo veraniego por esta fascinante historia de las matemáticas aquí:   http://platea.pntic.mec.es/~aperez4/decabeza/58decabeza.pdf

Construcción del polígono regular de 17 lados
Método de Gauss(1796), simplificada por H.W. Richmond (1893)

1. Se construye la circunferencia con centro en O. Se dibujan los diámetros perpendiculares AA ́ y VV ́

2. Se obtiene un punto B, sobre el radio OA, tal que el segmento OB es la cuarta parte de OA

3. Se obtiene el punto C, sobre OV, tal que el ángulo OBC es la cuarta parte del ángulo OBV ( hay que bisecar dos veces un ángulo)

4. Se obtiene un punto D, sobre el diámetro VV ́, tal que el ángulo DBV sea de 45º ( se puede hacer bisecando un ángulo recto)

5. Se obtiene G, mitad del segmento DV, se dibuja la circunferencia con centro G y radio GV. Esta circunferencia corta al radio OA en el punto E.

6. Se dibuja la circunferencia con centro C y radio CE, dicha circunferencia corta a VV ́ en dos puntos: F y G

7. Se levantan perpendiculares a VV ́, pasando por F y G , que cortan a la circunferencia en V3 y V5.

8. La mitad del arco V3V5, nos da un punto T. El segmento V 3T es el lado del polígono regular de 17 lados.


domingo, 12 de junio de 2016

El enigma de los lados del triángulo

Los triángulos no dejan de sorprendernos.
Ocultan misterios en apariencia simples pero también se empeñan a veces en hacer trivial lo complejo.

Este no es el caso de hoy. Os lo muestro

En una circunferencia de radio 4, dividimos su diámetro en 4 partes iguales mediante los puntos B y C.
Por el punto C trazamos una cuerda que forma con el diámetro un ángulo de 43º.
Formamos un triángulo cuyos vértices son los extremos de la cuerda y el punto B.
Y...¡sorpresa! ¿Cuánto suman... los cuadrados de los lados del triángulo?



No vale utilizar trigonometría. ¡Pura geometría euclídea!


martes, 7 de junio de 2016

Un triángulo peculiar

Para los que se han examinado de selectividad y para los que no, también.

Pues sí. Presumía de no ser un triángulo cualquiera.
Tenía una peculiaridad que la hacía único. Tenía que ver con las medidas de sus ángulos.
Mejor aún, con los valores de las tangentes de sus ángulos.
 Y poniendo una voz engolada lo explicaba a todo el que quisiera escuchar y a muchos que no querían:

" La suma de las tangentes de mis tres ángulos vale lo mismo que el producto de esas tangentes"

¡Y era cierto!

¿Cuánto medían sus ángulos?

Si lo descubres...NO lo divulgues...


lunes, 11 de abril de 2016

El misterio del pentágono inscrito

De vez en cuando la geometría nos sorprende con situaciones pintorescas. Y los pentágonos son una caja de sorpresas. ¿Sabías que?:

En todo pentágono ABCDE, inscrito en una circunferencia, el producto de las distancias de un vértice A a las rectas BC y DE coincide con el producto de las distancias de ese vértice A a las rectas BE y CD.

 Geogebratube

¿Por qué?

Misterios matemáticos. Si no te lo crees compruébalo con GeoGebra

miércoles, 2 de marzo de 2016

Entre maestros 2ª parte

La geometría del huevo, las ecuaciones de las flores y de las calabazas o de las conchas.
Y de Pitágoras a Mandelbrot, un paseo por la historia de las matemáticas.
Sí, las matemáticas son el lenguaje con el que está escrita la Naturaleza... Pero, ¿cómo convencemos de eso a los alumnos de secundaria?
Pues con un poco de imaginación.
No te lo cuento, te lo muestro en este vídeo.


Por cierto, aunque suene raro, la ecuación de casi cualquier flor es algo parecido a esto:

r = a·cos (n·θ) + b

¡En coordenadas polares!
Tres constantes y un coseno para alegrarnos la vista

domingo, 28 de febrero de 2016

Entre maestros


 Video Conferencia 1ª parte
Vídeo de la presentación

Entre maestros. Bonito título y mejor iniciativa.

El sábado 20-2-2016 tuve el placer de compartir la mañana con mis jóvenes amigos de la SMPM "Emma Castelnuovo" para hablar de matemáticas y, sobre todo, de cómo enseñar y cómo aprender matemáticas.

Empecé con una reflexión de qué hacemos en clase y qué deberíamos hacer: visualizar, investigar, descubrir,  aprender con la historia de las matemáticas y con el juego descubrir su belleza. Entre maestros. AP

 Presentaciones

Además de una parte de mi vida relacionada con la reina de las ciencias, les presenté mi pentagrama de la didáctica de las matemáticas y un menú completo formado por tres platos virtuales, de ejemplos concretos, de cómo "hacer matemáticas" en clase de matemáticas, introduciendo auténticas investigaciones autónomas para hacer con los alumnos.

En SlideShare están tres de esos "platos": la geometría del huevo (práctica para 4º de ESO) y las ecuaciones de las flores (práctica para 1º de bachillerato)
 Geometría del huevo

 Ecuaciones de las flores

 Presentación: La armonía


Fue una jornada entrañable y productiva. Gracias amigos.

viernes, 26 de febrero de 2016

Recuperando la memoria del IES Salvador Dalí

Desde 1988, hasta mi jubilación en 2014, mi  destino docente fue el Instituto Salvador Dalí de Madrid.

A partir del año 99 o 2000 el departamento de matemáticas venía manteniendo una página web de la que fui autor y mantenedor. Estaba ubicada, como la de tantos centros públicos de todo el país, en los servidores del PNTIC-ITE del Ministerio de Educación.  

Hasta que la CAM, decidió que las webs de "sus" centros no podían estar en sitios extraños (el MEC debía ser un sitio sospechoso). Curiosamente las que estaban ubicadas en servidores privados no tuvieron problemas. Tras la llegada de Wert al MECD desaparecieron de los servidores del INTEF todas las web de centros públicos españoles. Dilapidando, de paso, el esfuerzo, los materiales y las horas  de trabajo dedicadas durante unos cuantos años de miles de profesores voluntariosos luchadores por la implantación de las TIC en las aulas. Y a punto estuvieron de desaparecer también las páginas personales de  miles de profesores y profesoras.  (Ver el post La conjura de los necios). 

Durante un tiempo el material histórico de esa página estuvo colgado en la página oficial del IES Salvador Dalí en educa.madrid.org. Pero..., el nuevo director, erigido en webmaster justiciero, al estilo de los viejos señoritos andaluces de hace un siglo, ha decidido que eso no debía ser interesante. ¡Allá él y sus circunstancias!

En la última sesión de Entre maestros de la SMPM Emma Castelnuovo hablé de un premio de innovación que la CAM dio al Dpto de Matemáticas del Dalí, titulado: Más allá de la tiza y la pizarra. Materiales informáticos, audiovisuales y manipulables para el tratamiento de la diversidad en la ESO.

 Proyecto de innovación


He conseguido recuperar parte de los materiales de ese proyecto y otros del departamento y los he integrado en mi página web. Algunos materiales y algunas ideas no caducan. 

Al fin y al cabo, yo comparto más la filosofía de los viejos campesinos andaluces: ¡La tierra para el que la trabaja!



miércoles, 3 de febrero de 2016

Dividir un triángulo en dos partes iguales

Parece fácil dividir un triángulo en dos partes de igual área.

Pero no lo es tanto si imponemos condiciones a la forma de hacerlo. Por ejemplo: Dado un triángulo ABC y un punto cualquiera D de uno de sus lados, dividir el triángulo en dos partes de igual área mediante una recta que pase por el punto D.
Se trata de encontrar el punto F, en uno de los otros dos lados del triángulo. Decirlo es fácil... Pero encontrar el punto F no es tan simple.
Puedes usar GeoGebra y entonces el problema se convierte en casi un juego.
Pero la solución general la encontró en el siglo XIII Jordano de Nemore, un monje dominico que sucedió a Santo Domingo de Guzmán como superior de la orden.
Se encuentra en el Liber Philotegni, también conocido como De triangulis. ¡Y por supuesto sin utilizar GeoGebra!

¿Te atreves a intentarlo? La solución es fina y elegante. Si lo consigues descubrirás una joya de más de 800 años.

Por cierto, el bueno de Jordano es también el autor de un álgebra avanzada publicada en 1230, titulada de De Numeris datis,  donde da métodos generales para resolver ecuaciones de 2º grado y...¡utiliza letras para designar cantidades arbitrarias!
Por si no te lo crees: a, b, c... para los coeficientes y x para la incógnita.


No todo va a ser Fibonacci.





jueves, 10 de diciembre de 2015

2016: el año cúbico

Deseo a todos mis amigos y lectores un año 2016 un poco más feliz que el que está terminando...



Los matemáticos estarán especialmente contentos: 2016 es bisiesto...
Pero además, ¡sorpresa!, es la suma de los cubos de siete números naturales consecutivos...
Casi nada. ¡Un año cúbico!
Que venga cargado de alegrías matemáticas... y de las otras.
¡Que la razón os ilumine!

viernes, 4 de diciembre de 2015

El cuadrado más grande

Investigar en clase de matemáticas. Menos memoria y más imaginación.

¿Cuál es el mayor cuadrado que se puede meter dentro de un triángulo?

La pregunta es sencilla. Las respuestas no tanto. Un buen ejemplo para plantear en clase a los alumnos de cualquier nivel.
Todo parece indicar, ver la figura, que dos de sus vértices han de estar en uno de los lados y los otros dos cada uno en otro lado. Aunque no es bueno generalizar a partir de un solo caso. ¿Verdad?
Si se trata de un triángulo obtusángulo, uno de los vértices del cuadrado no está sobre un lado.
Incluso en un mismo triángulo hay tres candidatos a ser el cuadrado mayor. Los tres que se apoyan en cada uno de los lados, que en general tienen distinta área... Y sólo uno es el mayor, claro.
¿Por cuál nos decantamos? Ya tienes aquí un buen material para estrujarte la cabeza.

La historia no termina aquí, Si el triángulo es equilátero, está claro que los tres cuadrados máximos construidos sobre los tres lados son iguales. Pero, sorpresa: 
¡Hay un triángulo, no equilátero, en el que los tres cuadrados tiene la misma área!

Descubrirlo no es tarea fácil. De hecho lleva el nombre del matemático italiano, aún vivo, que lo descubrió.
¡Ánimo, GeoGebra y suerte!



viernes, 4 de septiembre de 2015

La enseñanza de las matemáticas en diferentes contextos

Profesores, profesoras de matemáticas, ya está aquí septiembre, y es hora de aterrizar y ponerse un poco al día para coger fuerzas e ideas para el curso que comienza.

Aquí tienes la primera oportunidad de actualizarte y divertirte. Del 21 al 25 de septiembre de 17 a 20 h. ya tienes ocupación. La universidad de otoño 2015 del CDL de Madrid en colaboración con la Universidad Complutense organiza el curso "La enseñanza de las matemáticas y su aprendizaje en diferentes contextos"


Aquí tienes el programa completo:
 https://www.cdlmadrid.org/cdlcdl/contenidos/biblioteca/matematicas.pdf

Participo como ponente. Expondré una muestra de los materiales del proyecto MAT-TIC GeoGebra  que estoy coordinando para la editorial SM y que ya este curso estará utilizable en su portal educativo
www.smsaviadigital.com

En la facultad de matemáticas de la UCM te espero.

jueves, 9 de julio de 2015

¿Por qué las matemáticas?

En el año 2006 con motivo del ICM (Congreso Internacional de Matemáticos) celebrado en Madrid, se organizaron una serie de exposiciones de contenido matemático en el Centro Cultural Conde-Duque de Madrid: Arte fractal: belleza y matemáticas; ¿Por qué las matemáticas? y Demoscene: matemáticas en movimiento.
 Catálogo          catálogo de la exposición


Los comisarios de las tres exposiciones fuimos Raúl Ibáñez (el matemático de Órbita laica de RTVE) y yo (el matemático del Universo matemático de RTVE). Y tuve el inmenso honor de hacer de guía en las exposiciones el mismísimo Benoît Mandelbrot. Nada mejor para ver una exposición de fractales que estar con el padre de los fractales.


Pero hoy el tema no va de fractales (otro día hablaré de Mandelbrot). Hablaré de la exposición ¿Por qué las matemáticas?

Era una exposición para ver, pero sobre todo para tocar. Se trataba de acercar las matemáticas a todos los públicos y de disfrutar con ellas. Y conseguimos lo imposible: hubo enormes colas para entrar en pleno mes de agosto en Madrid. Los temas y los verbos a conjugar eran: 


La exposición original no se puede ver a menos que viajemos en el tiempo. Pero sí se puede visitar la exposición virtual y ver, tocar y descubrir la presencia de las matemáticas en todo lo que nos rodea.
Te vas a sorprender. El título: Matemáticas experimentales. 
Disfrútalas aquí: http://www.experiencingmaths.org/






viernes, 22 de mayo de 2015

Agustín de Pedrayes

El día 16 de mayo oficié de conferenciante en la final de la XXII Olimpiada Matemática Asturiana para alumnos de 2º de ESO. El título de la conferencia de clausura fue: Agustín de Pedrayes. Retos matemáticos en la historia
Despues de un largo día de actividades matemáticas en Luces, Lastres (con una gymkana matemática en sus empinadas calles) y Colunga los alumnos y algunos adultos, paisanos del ilustre e ilustrado matemático, aguantaron casi una hora de aventuras en torno al casi desconocido matemático asturiano y algunos se entusiasmaron con el reto de Pedrayes (pocos) y con los retos matemáticos famosos que se habían producido un siglo antes y con los retos matemáticos actuales aún sin demostrar.
Dos días antes me habían hecho una entrevista el La Nueva España en la que denunciaba el poco reconocimiento y el mucho desconocimiento, que incluso en su pueblo natal, Lastres, había de uno de los matemáticos españoles más ilustres del siglo XVIII.El título ya da bastantes pistas del contenido.

Entrevista íntegra


Como casi todo el mundo desconoce a este gran hombre os facilito algunos datos biográficos:
Nació en Lastres en 1744.

Sus primeras letras las recibe en Lastres de mano de su padre Emeterio (el Dr. Mateo de la época) y en Colunga empieza sus estudios de Humanidades.

A los 14 años marcha a Santiago donde cursará estudios de… Teología, Filosofía y Derecho. Termina con 18 años.

1762, con 25 años, Madrid: profesor de matemáticas de la Real Casa de caballeros pajes de S.M.

1786-1791: Profesor de matemáticas en el Seminario de Nobles.
1791-1794: Años sabáticos. Colapso y retiro en Lastres. ¡Con subsidio de paro!
1794: Participa en la fundación del Instituto de Náutica y Mineralogía de Gijón. Amistad con Jovellanos
1798: Con Gabriel Ciscar, representante de España en la Comisión Internacional de pesas y medidas de París. Asiste en primera línea revolucionaria al nacimiento del Metro
1801: Carlos IV, le nombra Ministro del Tribunal de Contaduría.
1808: Llegan los franceses. Refugio en Cádiz.
1815: Muere el 26 de febrero en Madrid.

Por sus obras es difícil conocerle pues casi todas desaparecieron en el incendio de la Academia de Artillería de Segovia en 1862.
 Se conocen dos obras suyas:
1777: Nuevo y universal método de cuadraturas determinadas  (Resolución de integrales)
1805: Opúsculo  primero: Solución del Problema propuesto el año 1797

Fruto de su estancia en Francia es el comparador de Lenoir, del que dió instrucciones precisas para su construcción al célebre ingeniero francés.


Gauss lo cita en una de sus cartas al astrónomo Schumacher hablando de su famoso problema con el que retó a los matemáticos europeos en 1797. Reto al que sólo respondió acertadamente él mismo. Estaba dirigido a los matemáticos españoles, franceses y alemanes. El premio consistía en 5.000 reales para el que ofreciese una solución satisfactoria a una ecuación diferencial... de 16 términos.

¿En qué consistía el tan nombrado problema? Mejor lo veis con vuestros propios ojos:
Y, por si esto fuera poco, lo acompañaba de seis páginas de condiciones, que él llamaba "advertencias" que debía cumplir las variables. Vamos, lo que se dice un problema de enunciado elegante y simple.
Pedrayes había encontrado un método para resolver un tipo de ecuaciones diferenciales convirtiéndolas en integrales resolubles. Lo llamó su "Programa". Sus amigos financiaron la publicación de este programa aplicado a la resolución de su famoso problema... Uno de los pocos libros españoles de matemáticas editado por una Asociación Literaria. Ver para creer.
En el lugar donde estuvo ubicada su casa en Lastres se construyó en la década de los 50 un "precioso" bloque de viviendas. Un vecino de Lastres me confesó que quería quedarse con la puerta de la antigua vivienda. Sólo le "dejaron" conservar las bisagras.
Qué diferente hubiera sido todo si Agustín de Pedrayes hubiese nacido en Francia...  


 
 


 

sábado, 14 de marzo de 2015

A Bernardino del Campo. In memoriam

Hoy, el día de pi, nos ha dejado definitivamente nuestro amigo y colega Bernardino del Campo.

Con su marcha la educación matemática en España pierde un referente de compromiso con la innovación y la entrega en la batalla de mejorar la enseñanza de las matemáticas.

Pero todos los que le conocimos y pudimos disfrutar de su amistad perdemos mucho más; perdemos un enorme fracción del optimismo y del buen humor que imperaba en todos los eventos en que Bernardino participaba.

Nos ha dejado un excelente profesor de matemáticas y una gran persona.

Vivirá para siempre en nuestra memoria.




¡Hasta siempre Bernardino!

martes, 6 de enero de 2015

Leibniz y el sistema binario

Todo el mundo sabe que Leibniz junto a Newton es el padre del cálculo diferencial y del cálculo integral. Sí, eso de las derivadas y las integrales.
Lo que ya muy poca gente conoce es que Leibniz es un precuror en la introducción y el uso del sistema binario que hoy utilizan nuestros ordenadores, tabletas y teléfonos.

Sí. En 1679 Gottfried Wilhelm Leibniz publicó su numeración "diádica" que permitía escribir cualquier número como combinación de ceros y unos, e incluso dejó escrito como suamr, restar y multiplicar en dicho sistema.

Para los que se lo crean, aquí está la prueba.


Y tengo más.

viernes, 12 de diciembre de 2014

Calle Pitágoras

¿Sabíais que en Madrid hay una calle dedicada a Pitágoras?

Pues sí. Es cortíta y pequeña, está muy lejos del centro. En el barrio de San Blas, al lado de la Peineta y cerca de las musas.


Y lo más curioso, a su lado hay una gran avenida cuyo nombre es: ¡Luis Aragonés!



Seguro que la humanidad le debe mucho más al entrenador de fútbol (Zapatones le llamaban) que al sabio griego.
Pero nada, vivimos en una sociedad en que los pies se valoran muchísmo más que la cabeza.

¿Hay alguna en tu ciudad o en tu pueblo?


miércoles, 10 de diciembre de 2014

La dimensión matemática del Arte

Matemáticas en la Residencia de Estudiantes de Madrid

El jueves 11 de diciembre vuelve el ciclo Matemáticas en la Residencia, con la conferencia “Arte en dos, tres, cuatro y ln 3/ln 2 dimensiones”, impartida por Francisco Martín Casalderrey. Será a las 19:30 en la Residencia de Estudiantes (Calle del Pinar, 21-23, 28006 Madrid.


Contemplar una obra artística es una forma de placer estético. Una mirada matemática puede incrementarlo, descubriendo nuevas dimensiones en el mensaje artístico, imperceptibles con el ojo desnudo. Este es el objetivo de la próxima conferencia del ciclo Matemáticas en la Residencia: dotar al público de nuevas herramientas matemáticas para observar obras pictóricas conocidas.
En “Arte en dos, tres, cuatro y ln 3/ln 2 dimensiones”, se hará un recorrido por varias obras de arte con ojos matemáticos. Entre ellas, una pintura de El Greco, en el 400º aniversario de su muerte. “Las matemáticas ayudan a descubrir facetas nuevas escondidas cuadros que ya habíamos Contemplar una obra artística es una forma de placer estético. Una mirada matemática puede incrementarlo, descubriendo nuevas dimensiones en el mensaje artístico, imperceptibles con el ojo desnudo. Este es el objetivo de la próxima conferencia del ciclo Matemáticas en la Residencia: dotar al público de nuevas herramientas matemáticas para observar obras pictóricas conocidas.
Si te gustan las Matemáticas, si te gusta el Arte o si eres amante de las dos, no te lo puedes perder.
Yo voy a ir. Si vas, o has leido con atención, sabrás por qué.