Eureka. Diario de Gauss

Eureka. Diario de Gauss
Todo número es suma de tres números triangulares

miércoles, 2 de marzo de 2016

Entre maestros 2ª parte

La geometría del huevo, las ecuaciones de las flores y de las calabazas o de las conchas.
Y de Pitágoras a Mandelbrot, un paseo por la historia de las matemáticas.
Sí, las matemáticas son el lenguaje con el que está escrita la Naturaleza... Pero, ¿cómo convencemos de eso a los alumnos de secundaria?
Pues con un poco de imaginación.
No te lo cuento, te lo muestro en este vídeo.


Por cierto, aunque suene raro, la ecuación de casi cualquier flor es algo parecido a esto:

r = a·cos (n·θ) + b

¡En coordenadas polares!
Tres constantes y un coseno para alegrarnos la vista

lunes, 29 de febrero de 2016

Entre maestros


 Video Conferencia 1ª parte
Vídeo de la presentación

Entre maestros. Bonito título y mejor iniciativa.

El sábado 20-2-2016 tuve el placer de compartir la mañana con mis jóvenes amigos de la SMPM "Emma Castelnuovo" para hablar de matemáticas y, sobre todo, de cómo enseñar y cómo aprender matemáticas.

Empecé con una reflexión de qué hacemos en clase y qué deberíamos hacer: visualizar, investigar, descubrir,  aprender con la historia de las matemáticas y con el juego descubrir su belleza. Entre maestros. AP

 Presentaciones

Además de una parte de mi vida relacionada con la reina de las ciencias, les presenté mi pentagrama de la didáctica de las matemáticas y un menú completo formado por tres platos virtuales, de ejemplos concretos, de cómo "hacer matemáticas" en clase de matemáticas, introduciendo auténticas investigaciones autónomas para hacer con los alumnos.

En SlideShare están tres de esos "platos": la geometría del huevo (práctica para 4º de ESO) y las ecuaciones de las flores (práctica para 1º de bachillerato)
 Geometría del huevo

 Ecuaciones de las flores

 Presentación: La armonía


Fue una jornada entrañable y productiva. Gracias amigos.

viernes, 26 de febrero de 2016

Recuperando la memoria del IES Salvador Dalí

Desde 1988, hasta mi jubilación en 2014, mi  destino docente fue el Instituto Salvador Dalí de Madrid.

A partir del año 99 o 2000 el departamento de matemáticas venía manteniendo una página web de la que fui autor y mantenedor. Estaba ubicada, como la de tantos centros públicos de todo el país, en los servidores del PNTIC-ITE del Ministerio de Educación.  

Hasta que la CAM, decidió que las webs de "sus" centros no podían estar en sitios extraños (el MEC debía ser un sitio sospechoso). Curiosamente las que estaban ubicadas en servidores privados no tuvieron problemas. Tras la llegada de Wert al MECD desaparecieron de los servidores del INTEF todas las web de centros públicos españoles. Dilapidando, de paso, el esfuerzo, los materiales y las horas  de trabajo dedicadas durante unos cuantos años de miles de profesores voluntariosos luchadores por la implantación de las TIC en las aulas. Y a punto estuvieron de desaparecer también las páginas personales de  miles de profesores y profesoras.  (Ver el post La conjura de los necios). 

Durante un tiempo el material histórico de esa página estuvo colgado en la página oficial del IES Salvador Dalí en educa.madrid.org. Pero..., el nuevo director, erigido en webmaster justiciero, al estilo de los viejos señoritos andaluces de hace un siglo, ha decidido que eso no debía ser interesante. ¡Allá él y sus circunstancias!

En la última sesión de Entre maestros de la SMPM Emma Castelnuovo hablé de un premio de innovación que la CAM dio al Dpto de Matemáticas del Dalí, titulado: Más allá de la tiza y la pizarra. Materiales informáticos, audiovisuales y manipulables para el tratamiento de la diversidad en la ESO.

 Proyecto de innovación


He conseguido recuperar parte de los materiales de ese proyecto y otros del departamento y los he integrado en mi página web. Algunos materiales y algunas ideas no caducan. 

Al fin y al cabo, yo comparto más la filosofía de los viejos campesinos andaluces: ¡La tierra para el que la trabaja!



miércoles, 3 de febrero de 2016

Dividir un triángulo en dos partes iguales

Parece fácil dividir un triángulo en dos partes de igual área.

Pero no lo es tanto si imponemos condiciones a la forma de hacerlo. Por ejemplo: Dado un triángulo ABC y un punto cualquiera D de uno de sus lados, dividir el triángulo en dos partes de igual área mediante una recta que pase por el punto D.
Se trata de encontrar el punto F, en uno de los otros dos lados del triángulo. Decirlo es fácil... Pero encontrar el punto F no es tan simple.
Puedes usar GeoGebra y entonces el problema se convierte en casi un juego.
Pero la solución general la encontró en el siglo XIII Jordano de Nemore, un monje dominico que sucedió a Santo Domingo de Guzmán como superior de la orden.
Se encuentra en el Liber Philotegni, también conocido como De triangulis. ¡Y por supuesto sin utilizar GeoGebra!

¿Te atreves a intentarlo? La solución es fina y elegante. Si lo consigues descubrirás una joya de más de 800 años.

Por cierto, el bueno de Jordano es también el autor de un álgebra avanzada publicada en 1230, titulada de De Numeris datis,  donde da métodos generales para resolver ecuaciones de 2º grado y...¡utiliza letras para designar cantidades arbitrarias!
Por si no te lo crees: a, b, c... para los coeficientes y x para la incógnita.


No todo va a ser Fibonacci.





jueves, 10 de diciembre de 2015

2016: el año cúbico

Deseo a todos mis amigos y lectores un año 2016 un poco más feliz que el que está terminando...



Los matemáticos estarán especialmente contentos: 2016 es bisiesto...
Pero además, ¡sorpresa!, es la suma de los cubos de siete números naturales consecutivos...
Casi nada. ¡Un año cúbico!
Que venga cargado de alegrías matemáticas... y de las otras.
¡Que la razón os ilumine!

viernes, 4 de diciembre de 2015

El cuadrado más grande

Investigar en clase de matemáticas. Menos memoria y más imaginación.

¿Cuál es el mayor cuadrado que se puede meter dentro de un triángulo?

La pregunta es sencilla. Las respuestas no tanto. Un buen ejemplo para plantear en clase a los alumnos de cualquier nivel.
Todo parece indicar, ver la figura, que dos de sus vértices han de estar en uno de los lados y los otros dos cada uno en otro lado. Aunque no es bueno generalizar a partir de un solo caso. ¿Verdad?
Si se trata de un triángulo obtusángulo, uno de los vértices del cuadrado no está sobre un lado.
Incluso en un mismo triángulo hay tres candidatos a ser el cuadrado mayor. Los tres que se apoyan en cada uno de los lados, que en general tienen distinta área... Y sólo uno es el mayor, claro.
¿Por cuál nos decantamos? Ya tienes aquí un buen material para estrujarte la cabeza.

La historia no termina aquí, Si el triángulo es equilátero, está claro que los tres cuadrados máximos construidos sobre los tres lados son iguales. Pero, sorpresa: 
¡Hay un triángulo, no equilátero, en el que los tres cuadrados tiene la misma área!

Descubrirlo no es tarea fácil. De hecho lleva el nombre del matemático italiano, aún vivo, que lo descubrió.
¡Ánimo, GeoGebra y suerte!



viernes, 4 de septiembre de 2015

La enseñanza de las matemáticas en diferentes contextos

Profesores, profesoras de matemáticas, ya está aquí septiembre, y es hora de aterrizar y ponerse un poco al día para coger fuerzas e ideas para el curso que comienza.

Aquí tienes la primera oportunidad de actualizarte y divertirte. Del 21 al 25 de septiembre de 17 a 20 h. ya tienes ocupación. La universidad de otoño 2015 del CDL de Madrid en colaboración con la Universidad Complutense organiza el curso "La enseñanza de las matemáticas y su aprendizaje en diferentes contextos"


Aquí tienes el programa completo:
 https://www.cdlmadrid.org/cdlcdl/contenidos/biblioteca/matematicas.pdf

Participo como ponente. Expondré una muestra de los materiales del proyecto MAT-TIC GeoGebra  que estoy coordinando para la editorial SM y que ya este curso estará utilizable en su portal educativo
www.smsaviadigital.com

En la facultad de matemáticas de la UCM te espero.

jueves, 9 de julio de 2015

¿Por qué las matemáticas?

En el año 2006 con motivo del ICM (Congreso Internacional de Matemáticos) celebrado en Madrid, se organizaron una serie de exposiciones de contenido matemático en el Centro Cultural Conde-Duque de Madrid: Arte fractal: belleza y matemáticas; ¿Por qué las matemáticas? y Demoscene: matemáticas en movimiento.
 Catálogo          catálogo de la exposición


Los comisarios de las tres exposiciones fuimos Raúl Ibáñez (el matemático de Órbita laica de RTVE) y yo (el matemático del Universo matemático de RTVE). Y tuve el inmenso honor de hacer de guía en las exposiciones el mismísimo Benoît Mandelbrot. Nada mejor para ver una exposición de fractales que estar con el padre de los fractales.


Pero hoy el tema no va de fractales (otro día hablaré de Mandelbrot). Hablaré de la exposición ¿Por qué las matemáticas?

Era una exposición para ver, pero sobre todo para tocar. Se trataba de acercar las matemáticas a todos los públicos y de disfrutar con ellas. Y conseguimos lo imposible: hubo enormes colas para entrar en pleno mes de agosto en Madrid. Los temas y los verbos a conjugar eran: 


La exposición original no se puede ver a menos que viajemos en el tiempo. Pero sí se puede visitar la exposición virtual y ver, tocar y descubrir la presencia de las matemáticas en todo lo que nos rodea.
Te vas a sorprender. El título: Matemáticas experimentales. 
Disfrútalas aquí: http://www.experiencingmaths.org/






sábado, 23 de mayo de 2015

Agustín de Pedrayes

El día 16 de mayo oficié de conferenciante en la final de la XXII Olimpiada Matemática Asturiana para alumnos de 2º de ESO. El título de la conferencia de clausura fue: Agustín de Pedrayes. Retos matemáticos en la historia
Despues de un largo día de actividades matemáticas en Luces, Lastres (con una gymkana matemática en sus empinadas calles) y Colunga los alumnos y algunos adultos, paisanos del ilustre e ilustrado matemático, aguantaron casi una hora de aventuras en torno al casi desconocido matemático asturiano y algunos se entusiasmaron con el reto de Pedrayes (pocos) y con los retos matemáticos famosos que se habían producido un siglo antes y con los retos matemáticos actuales aún sin demostrar.
Dos días antes me habían hecho una entrevista el La Nueva España en la que denunciaba el poco reconocimiento y el mucho desconocimiento, que incluso en su pueblo natal, Lastres, había de uno de los matemáticos españoles más ilustres del siglo XVIII.El título ya da bastantes pistas del contenido.

Entrevista íntegra


Como casi todo el mundo desconoce a este gran hombre os facilito algunos datos biográficos:
Nació en Lastres en 1744.

Sus primeras letras las recibe en Lastres de mano de su padre Emeterio (el Dr. Mateo de la época) y en Colunga empieza sus estudios de Humanidades.

A los 14 años marcha a Santiago donde cursará estudios de… Teología, Filosofía y Derecho. Termina con 18 años.

1762, con 25 años, Madrid: profesor de matemáticas de la Real Casa de caballeros pajes de S.M.

1786-1791: Profesor de matemáticas en el Seminario de Nobles.
1791-1794: Años sabáticos. Colapso y retiro en Lastres. ¡Con subsidio de paro!
1794: Participa en la fundación del Instituto de Náutica y Mineralogía de Gijón. Amistad con Jovellanos
1798: Con Gabriel Ciscar, representante de España en la Comisión Internacional de pesas y medidas de París. Asiste en primera línea revolucionaria al nacimiento del Metro
1801: Carlos IV, le nombra Ministro del Tribunal de Contaduría.
1808: Llegan los franceses. Refugio en Cádiz.
1815: Muere el 26 de febrero en Madrid.

Por sus obras es difícil conocerle pues casi todas desaparecieron en el incendio de la Academia de Artillería de Segovia en 1862.
 Se conocen dos obras suyas:
1777: Nuevo y universal método de cuadraturas determinadas  (Resolución de integrales)
1805: Opúsculo  primero: Solución del Problema propuesto el año 1797

Fruto de su estancia en Francia es el comparador de Lenoir, del que dió instrucciones precisas para su construcción al célebre ingeniero francés.


Gauss lo cita en una de sus cartas al astrónomo Schumacher hablando de su famoso problema con el que retó a los matemáticos europeos en 1797. Reto al que sólo respondió acertadamente él mismo. Estaba dirigido a los matemáticos españoles, franceses y alemanes. El premio consistía en 5.000 reales para el que ofreciese una solución satisfactoria a una ecuación diferencial... de 16 términos.

¿En qué consistía el tan nombrado problema? Mejor lo veis con vuestros propios ojos:
Y, por si esto fuera poco, lo acompañaba de seis páginas de condiciones, que él llamaba "advertencias" que debía cumplir las variables. Vamos, lo que se dice un problema de enunciado elegante y simple.
Pedrayes había encontrado un método para resolver un tipo de ecuaciones diferenciales convirtiéndolas en integrales resolubles. Lo llamó su "Programa". Sus amigos financiaron la publicación de este programa aplicado a la resolución de su famoso problema... Uno de los pocos libros españoles de matemáticas editado por una Asociación Literaria. Ver para creer.
En el lugar donde estuvo ubicada su casa en Lastres se construyó en la década de los 50 un "precioso" bloque de viviendas. Un vecino de Lastres me confesó que quería quedarse con la puerta de la antigua vivienda. Sólo le "dejaron" conservar las bisagras.
Qué diferente hubiera sido todo si Agustín de Pedrayes hubiese nacido en Francia...  


 
 


 

sábado, 14 de marzo de 2015

A Bernardino del Campo. In memoriam

Hoy, el día de pi, nos ha dejado definitivamente nuestro amigo y colega Bernardino del Campo.

Con su marcha la educación matemática en España pierde un referente de compromiso con la innovación y la entrega en la batalla de mejorar la enseñanza de las matemáticas.

Pero todos los que le conocimos y pudimos disfrutar de su amistad perdemos mucho más; perdemos un enorme fracción del optimismo y del buen humor que imperaba en todos los eventos en que Bernardino participaba.

Nos ha dejado un excelente profesor de matemáticas y una gran persona.

Vivirá para siempre en nuestra memoria.




¡Hasta siempre Bernardino!

martes, 6 de enero de 2015

Leibniz y el sistema binario

Todo el mundo sabe que Leibniz junto a Newton es el padre del cálculo diferencial y del cálculo integral. Sí, eso de las derivadas y las integrales.
Lo que ya muy poca gente conoce es que Leibniz es un precuror en la introducción y el uso del sistema binario que hoy utilizan nuestros ordenadores, tabletas y teléfonos.

Sí. En 1679 Gottfried Wilhelm Leibniz publicó su numeración "diádica" que permitía escribir cualquier número como combinación de ceros y unos, e incluso dejó escrito como suamr, restar y multiplicar en dicho sistema.

Para los que se lo crean, aquí está la prueba.


Y tengo más.

viernes, 12 de diciembre de 2014

Calle Pitágoras

¿Sabíais que en Madrid hay una calle dedicada a Pitágoras?

Pues sí. Es cortíta y pequeña, está muy lejos del centro. En el barrio de San Blas, al lado de la Peineta y cerca de las musas.


Y lo más curioso, a su lado hay una gran avenida cuyo nombre es: ¡Luis Aragonés!



Seguro que la humanidad le debe mucho más al entrenador de fútbol (Zapatones le llamaban) que al sabio griego.
Pero nada, vivimos en una sociedad en que los pies se valoran muchísmo más que la cabeza.

¿Hay alguna en tu ciudad o en tu pueblo?


miércoles, 10 de diciembre de 2014

La dimensión matemática del Arte

Matemáticas en la Residencia de Estudiantes de Madrid

El jueves 11 de diciembre vuelve el ciclo Matemáticas en la Residencia, con la conferencia “Arte en dos, tres, cuatro y ln 3/ln 2 dimensiones”, impartida por Francisco Martín Casalderrey. Será a las 19:30 en la Residencia de Estudiantes (Calle del Pinar, 21-23, 28006 Madrid.


Contemplar una obra artística es una forma de placer estético. Una mirada matemática puede incrementarlo, descubriendo nuevas dimensiones en el mensaje artístico, imperceptibles con el ojo desnudo. Este es el objetivo de la próxima conferencia del ciclo Matemáticas en la Residencia: dotar al público de nuevas herramientas matemáticas para observar obras pictóricas conocidas.
En “Arte en dos, tres, cuatro y ln 3/ln 2 dimensiones”, se hará un recorrido por varias obras de arte con ojos matemáticos. Entre ellas, una pintura de El Greco, en el 400º aniversario de su muerte. “Las matemáticas ayudan a descubrir facetas nuevas escondidas cuadros que ya habíamos Contemplar una obra artística es una forma de placer estético. Una mirada matemática puede incrementarlo, descubriendo nuevas dimensiones en el mensaje artístico, imperceptibles con el ojo desnudo. Este es el objetivo de la próxima conferencia del ciclo Matemáticas en la Residencia: dotar al público de nuevas herramientas matemáticas para observar obras pictóricas conocidas.
Si te gustan las Matemáticas, si te gusta el Arte o si eres amante de las dos, no te lo puedes perder.
Yo voy a ir. Si vas, o has leido con atención, sabrás por qué.



miércoles, 15 de octubre de 2014

El oro de Newton. Entrevista en radio Descartes

Pero, ¿aún no sabes de qué va El oro de Newton?

Pues aquí encontrarás algunas pistas.

¿Es cierto que Newton era un alquimista?, ¿buscaba la piedra filosofal y poder transmutar plomo en oro?

¿Utilizaron los nazis sus manuscritos para fabricar oro para el tercer Reich?

¿Dónde enterraron ese oro?

Para descubrirlo hay que saber y pensar en clave matemática

Una novela matemática. Descubre por qué. Las claves están en Los Principia Mathematica de Newton.

Los otros protagonistas: Newton, Leibniz, Cardano, Fermat, Omar Jayyam, Gauss, Hilbert, Euler...

sábado, 23 de agosto de 2014

Mujeres conciencia

En el blog http://mujeresconciencia.com recomiendan en su entrada del 22 de agosto el documental Mujeres matemáticas de la serie de RTVE Universo Matemático, de la que soy autor, guionista y presentador.


Siempre es una buena ocasión para recordar lo injusta que ha sido la sociedad y la historia con las mujeres que han tenido que batallar en las condiciones más adversas por ocupar un puesto en la historia de la ciencia.

Pero ahora es un buen momento, justo cuando, por primera vez en la historia, una mujer Maryam Mirzakhani obtiene la medalla Field.

Felicidades en su persona a todas las mujeres matemáticas.

lunes, 14 de julio de 2014

Evaluación de Escuela 2.0 con los resultados de PISA2012

Carlos Medina nos recomienda en twitter leer con  calma la evaluación del programa Escuela 2.0 a tenor de los resultados de PISA 2012. Un estudio publicado por el INEE


Mi resumen: 
¿Se imaginan a dos economistas haciendo un estudio sobre las capturas de bonito del norte... en Rota? 
Pues el resultado es el esperado: las capturas han sido escasas... Mucho más bajas que en el Cantábrico.¡Genios!

Los autores de la evaluación son dos economistas, que ante el éxito demostrado en el diagnóstico y tratamiento de la crisis económica, ahora quieren solucionar los problemas de la Educación. Son Sergi Jiménez‐Martín (economista, profesor asociado del Departamento de Económicas de la Univ. Pompeu Fabra y miembro de FEDEA) y CristinaVillaplana Prieto (economista, profesora del Departamento de Fundamentos de Análisis Económico de la Univ. de Murcia).

Se trata de un amplio estudio estadístico de la repercusión que haya podido tener en los resultados de la prueba PISA 2012 el hecho de participar en el Programa Escuela 2.0.

No está mal que los economistas hagan estudios sobre cuestiones educativas, sobre todo si tienen algún conocimiento previo del tema que están estudiando. Parece que este no es el caso. Un ejemplo. En el previo del estudio se dice:

El total de la inversión (del Programa Escuela 2.0) asciende a 302 millones de euros. Casi el 50% del gasto se ha realizado en tres Comunidades (Andalucía, Cataluña  y  Madrid).

Pues bien, como cualquier experto en temas educativos sabe, la Comunidad de Madrid se negó a participar en dicho programa. Es decir, nunca recibió ni invirtió los 23.022.965  € que dice el estudio.
Esos datos son públicos y figuran en las publicaciones oficiales del MECD que los autores no han consultado, como es evidente.

Un estudio estadístico puede resultar erróneo si el autor se equivoca al seleccionar la muestra, pero con toda certeza sus conclusiones son poco dignas de tener en cuenta si se equivoca al elegir la población. Y eso es lo que les ha pasado a estos economistas. Veamos por qué:

1. Los primeros ordenadores portátiles de Escuela 2.0 se distribuyeron en el curso 2009-10, entre enero y mayo de 2010 para ser más precisos. En todas las CC.AA. participantes, a excepción de Catalunya, los destinatarios de esas dotaciones fueron alumnos de 5º de Primaria, es decir niños de 10 u 11 años. Salvo que hayan repetido cursos anteriores.

2. En Catalunya los alumnos destinatarios fueron de 1º de ESO; de 12-13 años.

3. Las pruebas PISA las realizan exclusivamente alumnos de 15 años independientemente del curso en que estén.

4. Si la aritmética elemental (no la estadística) no miente, entre 2009 y 2012 SÓLO hay 3 años de diferencia.

5. Más aritmética natural: un alumno que en 2009 tenía 10 años tiene en 2012.. ¡exacto!, 13 años. El que tenía 11 tendría, ¡14 años! Un alumno que en 2009 estuviese en 5º de Primaria y en 2012 tuviese 15 años, impepinablemente tenía 13 años en 2010. Es decir, había repetido 2 veces, ¡pero en primaria!, es decir es un alumno con dificultades de aprendizaje. Solo los alumnos catalanes podrían haber participado en las pruebas PISA, sin repetir curso.
Quizás por eso el estudio hace tanto hincapié en los repetidores de un año o de dos años, con la apariencia de meticulosidad, aunque lo que están haciendo es convertir en norma de lo que es excepción. Con la fácil que hubiese sido consultar al INTEF o a las CC.AA. cuántos alumnos participantes en Escuela 2.0 (suspendido por el MECD en el curso 2011-12, por cierto) han realizado las pruebas PISA. Bueno, eso y los datos de los niveles educativos que han participado cada año en las distintas CC.AA. (Actas Comité TIC del INTEF).

6. Lo aparente sofistificación del estudio (véase la muestra) puede pretender ocultar un hecho que parece manifiesto al leer las conclusiones: el uso de la cocina estadística para llegar a unas conclusiones "decididas" de antemano: el uso de ordenadores personales hace "descender los resultados en matemáticas". Textual: "De hecho, el número de ordenadores por alumno en 2012 ejerce un efecto significativo  y  negativo sobre  la  nota  en  Matemáticas  para todos  los  alumnos"


7. Otras lindezas sospechosas: Parece que los alumnos que utilizan las TIC 1 o 2 veces al mes para hacer los deberes obtienen mejores resultados que los que las utilizan todos los días dependiendo si son o no repetidores?? No se extrañen, de la presentación críptica de tablas y fórmulas estadísticas cualquier conclusión es posible.

Corolario:
Resulta extraño que un estudio estadístico de más de 60 páginas, denso, complejo y salpicado de tecnicismos y lenguaje cuasi sacerdotal,  pueda resumir sus conclusiones en tan solo una página. ¡Muy sospechoso!

Pero así son los economistas: tras el éxito de sus medidas económicas, ahora a arreglar la educación pública. Pues nada: suerte. Y a mejorar los estudios



miércoles, 2 de julio de 2014

El oro de Newton. Firma en la Feria del Libro de Madrid

Pues si. Quino y yo estuvimos firmando ejemplares de El oro de Newton en la Feria del Libro de Madrid. Y como alguno no se lo creyó, aquí está la prueba definitiva.


Si no salís es porque no fuisteis. O porque fuisteis antes o después. Hay que estar en el momento preciso y en el lugar indicado.

Claro, firmamos algo menos que Blue Jeans

miércoles, 25 de junio de 2014

El oro de Newton. Entrevista en Radio Euskadi

El oro de Newton ya está en marcha. El día 24 me hicieron una entrevista en Radio Euskadi, en el programa La mecánica del caracol, para hablar de la novela.

Eva y Raúl Ibáñez me brindaron una excelente ocasión para explayarme durante casi media hora sobre algunos de los misterios del Oro de Newton y de su gestación.

 Entrevista Antonio Pérez

Aquí tienes la entrevista. Es a partir del minuto 26:30. Pero si tienes tiempo, te aconsejo que escuches todo el programa. Merece la pena.

Por cierto, ya puedes encontrar El oro de Newton en versión digital (e-book) o impresa en La casa del libro. O en www.amazon.es/el+oro+de+newton

martes, 17 de junio de 2014

El oro de Newton

A Quino y a mi nos ha costado unos años y algún disgusto con una multinacional de la edición (RBA) pero al final ha visto la luz.

Lo que empezó como una prolongación lúdica de los Matecuentos (ed. Nivola) se convirtió en una novela seria, histórica y matemática (si es que pueden existir novelas matemáticas) hecha en collera (los taurinos ya saben).

Sin templarios, ni cálices sagrados. Con protagonistas humanos arrastrados por el torrente de la historia, en Londres y Berlín, en los años 40. O con sus nietos en Asturias y Alemania en el siglo XXI.

Y con otros protagonistas más discretos, pero siempre presentes: Newton, Fermat, Euler, Durero, Paccioli, Vermeer, Picasso... ¡Sus libros y sus cuadros expoliados por los nazis! Como también lo fue el "oro" de Newton.

Para encontrar el Oro tendrás que resolver algún problema matemático. Pero no te desesperes. Muchos, antes que tú, lo intentaron y fracasaron.

Y para comprar la novela te tendrás que pasar por la FNAC, la Casa del Libro, el Corte Inglés...

Y también lo puedes encontrar en la red:
amazon.es
http://www.visionlibros.com/
http://www.distriforma.es/
http://www.agapea.com/

¡Suerte!


lunes, 12 de mayo de 2014

Día Escolar de las Matemáticas. 2014

Como cada 12 de mayo, celebramos hoy el Día Escolar de las Matemáticas en homenaje a D. Pedro Pug Adam, excelente matemático y persona preocupada por la didáctica de las matemáticas.

El tema de este año es Matemáticas y Computación. 

En la página http://dem.fespm.es/ puedes encontrar un buen número de materiales, información, actividades, ejemplos, web... para hacer en el aula y para disfrutar de las matemáticas divertidas, de las que hacen pensar y disfrutar.


Y también puedes disfrutar de la conferencia que el profesor Tomás Recio de la Universidad de Cantabria, introductor de Geogebra en España, ofreció en la Universidad Complutense como culminación del DEM2014. 

Su sugerente título: ¿Matemáquinas o maquimáticas?
¿Podrán algún día las máquinas demostrar un teorema? No os la perdáis.


¡¡Viva d. Pedro Puig Adam!!, ¡vivan las matemáticas!